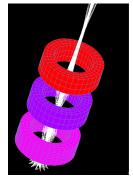

u -Excel 軌道計算版

Magnetic Solution

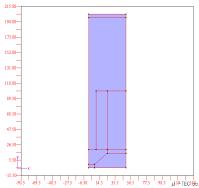
電子銃、イオンビーム、スパッタ解析に!

特徵

電場解析、磁場解析、電場・磁場中のイオンビームの軌道を計算します 荷電粒子の質量、電荷数、初期座標、初期速度を設定 電場・電位分布、磁場、磁束線分布、軌道図の出力 荷電粒子の反発作用を考慮

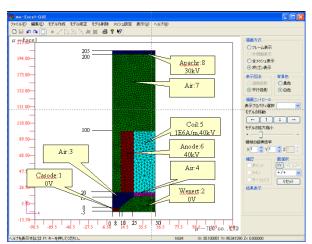

機能

モデル作成


- ▶ 電場·磁場解析の共通モデルを定義します
- ▶ ポイント、ライン、サーフェースにより形状定義
- ▶ DXFファイルをインポートしライン情報を作成
- ▶ ラインで閉じた領域を探し、自動的にサーフェースを作成する機能も有ります

メッシュ作成

- ▶ 3角形自動メッシュ機能
- ▶ 節点数上限20000
- ▶ メッシュの粗密設定


解析対象

mu-Excel-GUI

ファイル(F) 編集(E) モデル作成 モデル修正 モデル削除 メッシュ設定 表示(V) ヘルブ(H)

電場・磁場共通モデル

共通モデルの条件設定(電極電位やコイル電流条件)

解析条件

- ▶ 2次元·軸対称3次元の選択(電場·磁場解析時)
- ▶ 軌道計算は3次元解析を行います
- ▶ サーフェース毎に材料種類(誘電体/電極/電荷)を選択
- ▶ 材料データベースから材料を選択
- ▶ 電極電位、電荷密度を設定

電場条件シート 27

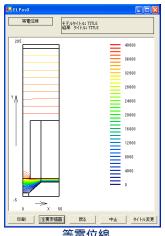
熱·構造·電磁界解析ソフト μシリーズ

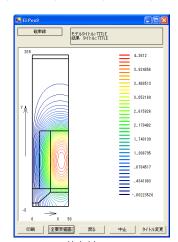
9	解析タイトル						9	解析タイトル						
10	TITLE						10	TITLE						
11	解析タイプ	軸対称					11	磁界考慮	する					
12	領域番号	材料種類	材料番号	磁化半径方向	磁化軸方向	座標系	12	空間電荷考慮	しない	収束回数	3			
13	1	非磁性材	▼ 1				13	粒子質量	荷電数	時間刻み	計算ステップ			
14	2	非磁性材 強磁性材	1				14	9.110E-31	-1.000E+00	1.000E-11	1000			
15	3	12年VX 1主17月 コイル	1				15	計算領域数						
16	4	170 永久磁石	1				16	2						
17	5	コイル	1				17	領域順番	領域番号					
18	6	非磁性材	1				18	1	3					
19	7	非磁性材	1				19	2	7					
20	8	非磁性材	1				20	軌道数						
21	コイル入力	~有り~					21	16						
22	コイル番号	領域番号	電流密度(A/m2)				22	軌道番号	初期座標X	初期座標Y	方向X	方向Y	初期速度eV	担当電流量A
23	1	5	1.000E+06				23	1	8.000E+00	1.000E+00	0.000E+00	1.000E+00	1.000E-02	0.000E+00
24							24	2	7.000E+00	1.000E+00	0.000E+00	1.000E+00	1.000E-02	0.000E+00

磁場条件シート

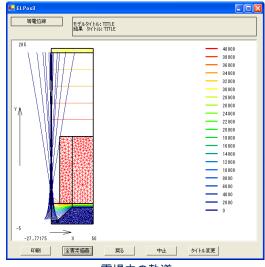
軌道条件シート

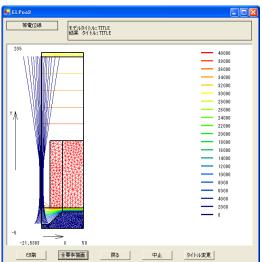
計算実行


▶ 有限要素法(ICCG法)



結果表示


- ▶ 電場解析の電場、電位分布表示
- ▶ 磁場解析の磁場、磁束線図表示
- ▶ イオンビームの軌道表示



等電位線

磁束線

電場内の軌道

電場・磁場内の軌道